Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
Sustainability ; 15(2), 2023.
Article in English | Web of Science | ID: covidwho-2227234

ABSTRACT

The COVID-19 pandemic has forced the whole world to wear single-use disposable facemasks for health protection. Studies have shown that about 129 billion facemasks are wasted each month, which will contaminate the environment and create a big problem in getting rid of them. These discarded facemasks are usually dumped in garbage bins, in landfills, or in some cases littering them on the streets, which creates a health hazard to human beings. In order to solve such environmental problems, the current study presents new novel composite materials developed by recycling discarded facemasks. These materials have great potential to be used for both thermal insulation and sound-absorbing for building walls. Experiments have been performed to make bound composite materials using the discarded facemasks as new raw materials with wood adhesive as a binder. The discarded facemasks were first heated for one and half-hour at 120 degrees C to kill any contaminants (biological or others). Five different composites are made: the first uses the complete facemasks, the second uses facemasks with iron nose clip only, the third uses facemasks with no both ear loops and iron nose clip, the fourth one contains the elastic ear loops only, and the fifth one has facemasks with elastic ear loops only. Coefficients of thermal conductivity for the five samples are obtained as 0.0472, 0.0519, 0.05423, 0.0619, 0.0509 (#5, e), and 0.04347 (#5, f) W/m K at 25 degrees C, respectively. The sound-absorbing coefficient for samples 1, 2, and 3 is above 0.5 in general and, at some frequencies, approaches 0.8. Results show that the soft samples with low binder concentration have a good sound absorbing coefficient at high frequency, while the one with high binder concentration has that at a low frequency for the same facemasks' mass. Mechanical properties of all samples are also reported by performing the three-point bending moment. Composite samples have a low moisture content (0.2%) and have high thermal stability up to 325 degrees C. These composite samples could replace the petrochemical and synthetic thermal insulation materials and, at the same time, get rid of the huge discarded waste facemasks, which is considered a huge environmental problem.

2.
Sustainability ; 14(19):12625, 2022.
Article in English | ProQuest Central | ID: covidwho-2066440

ABSTRACT

The pandemic of COVID-19 disease has brought many challenges in the field of personal protective equipment. The amount of disposable surgical masks (DSMs) consumed increased dramatically, and much of it was improperly disposed of, i.e., it entered the environment. For this reason, it is crucial to accurately analyze the waste and identify all the hazards it poses. Therefore, in the present work, a DSM was disassembled, and gravimetric analysis of representative DSM waste was performed, along with detailed infrared spectroscopy of the individual parts and in-depth analysis of the waste. Due to the potential water contamination by micro/nanoplastics and also by other harmful components of DSMs generated during the leaching and photodegradation process, the xenon test and toxicity characteristic leaching procedure were used to analyze and evaluate the leaching of micro/nanoplastics. Micro/nanoplastic particles were leached from all five components of the mask in an aqueous medium. Exposed to natural conditions, a DSM loses up to 30% of its mass in just 1 month, while micro/nanoplastic particles are formed by the process of photodegradation. Improperly treated DSMs pose a potential hazardous risk to the environment due to the release of micro/nanoparticles and chloride ion content.

3.
Am J Health Syst Pharm ; 79(19): 1685-1696, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-1890865

ABSTRACT

PURPOSE: Interventions to improve the safety and efficiency of manual sterile compounding are needed. This study evaluated the impact of a technology-assisted workflow system (TAWS) on sterile compounding safety (checks, traceability, and error detection), and efficiency (task time). METHODS: Observations were conducted in an oncology pharmacy transitioning from a manual to a TAWS process for sterile compounding. Process maps were generated to compare manual and TAWS checks and traceability. The numbers and types of errors detected were collected, and task times were observed directly or via TAWS data logs. RESULTS: Analysis of safety outcomes showed that, depending on preparation type, 3 to 4 product checks occurred in the manual process, compared to 6 to 10 checks with TAWS use. TAWS checks (barcoding and gravimetric verification) produced better traceability (documentation). The rate of incorrect-drug errors decreased with technology-assisted compounding (from 0.4% [5 of 1,350 preparations] with the manual process to 0% [0 of 1,565 preparations] with TAWS use; P < 0.02). The TAWS increased detection of (1) errors in the amount of drug withdrawn from vials (manual vs TAWS, 0.4% [5/1,350] vs 1.2% [18/1565]; P < 0.02), and (2) errors in the amount of drug injected into the final container (manual vs TAWS, 0% [0/1,236] vs 0.9% [11/1,272]; P < 0.002). With regard to efficiency outcomes, TAWS use increased the mean mixing time (manual vs TAWS, 275 seconds vs 355 seconds; P < 0.001), had no significant impact on average visual checking time (manual vs TAWS, 21.4 seconds vs 21.6 seconds), and decreased average physical checking time (manual vs TAWS, 58.6 seconds vs 50.9 seconds; P < 0.001). CONCLUSION: In comparison to manual sterile compounding, use of the TAWS improved safety through more frequent and rigorous checks, improved traceability (via superior documentation), and enhanced error detection. Results related to efficiency were mixed.


Subject(s)
Pharmacy Service, Hospital , Canada , Drug Compounding/methods , Hospitals, Community , Humans , Technology
4.
Sustainability ; 13(24):13887, 2021.
Article in English | ProQuest Central | ID: covidwho-1598977

ABSTRACT

In order to meet the environmental needs caused by large plastic waste accumulation, in the road construction sector, an effort is being made to integrate plastic waste with the function of polymer into asphalt mixtures;with the purpose of improving the mechanical performance of the pavement layers. This study focuses on the effect of a recycled mixture of plastic waste on the chemical, thermal, and rheological properties of designed asphalt blends and on the identification of the most suitable composition blend to be proposed for making asphalt mixture through a dry modification method. Thermo-gravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis were carried out to investigate the effect of various concentrations and dimensions of plastic waste (PW) on the neat binder (NB). The frequency sweep test and the multiple stress creep and recovery test were performed to analyze the viscoelastic behavior of the asphalt blends made up of PW in comparison with NB and a commercial modified bitumen (MB). It has been observed that the presence of various types of plastic materials having different melting temperatures does not allow a total melting of PW powder at the mixing temperatures. However, the addition of PW in the asphalt blend significantly improved the aging resistance without affecting the oxidation process of the plastic compound present in the asphalt blend. Furthermore, when the asphalt blend mixed with 20% PW by the weight of bitumen is adopted into the asphalt mixture as polymer, it improves the elasticity and strengthens the mixture better than the mixture containing MB.

5.
Measurement (Lond) ; 181: 109589, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1233535

ABSTRACT

The importance of measurement quality cannot be over emphasized in medical applications, as one is dealing with life issues and the wellbeing of society, from oncology to new-borns, and more recently to patients of the COVID-19 pandemic. In all these dire situations, the accuracy of fluid delivered according to a prescribed dose can be critical. Microflow applications are growing in importance for a wide variety of scientific fields, namely drug development and administration, Organ-on-a-Chip, or bioanalysis, but accurate and reliable measurements are a tough challenge in micro-to-femto flow operating ranges, from 2.78 × 10-4 mL/s down to 2.78 × 10-7 mL/s (1000 µL/h down to 1 µL/h). Several sources of error have been established such as the mass measurement, the fluid evaporation dependent on the gravimetric methodology implemented, the tube adsorption and the repeatability, believed to be closely related to the operating mode of the stepper motor and drive screw pitch of a syringe pump. In addition, the difficulty in dealing with microflow applications extends to the evaluation of measurement uncertainty which will qualify the quality of measurement. This is due to the conditions entailed when measuring very small values, close to zero, of a quantity such as the flow rate which is inherently positive. Alternative methods able to handle these features were developed and implemented, and their suitability will be discussed.

6.
Am J Health Syst Pharm ; 78(2): 122-134, 2021 01 05.
Article in English | MEDLINE | ID: covidwho-872944

ABSTRACT

PURPOSE: A study was conducted to compare an intravenous (IV) gravimetric technology-assisted workflow (TAWF) platform to an IV robotic system. In the study we reviewed both IV technology platforms using the same gravimetric quality assurance system, which allowed for direct comparison. METHODS: All oncology preparations compounded from January 2016 through December 2018 using either system were included in our retrospective analysis. Final preparation accuracy, IV system precision, and workflow throughput (analyzed using lean process methodologies) were evaluated. RESULTS: Data analysis indicated that use of the IV gravimetric TAWF system was associated with a significantly lower percentage of accuracy errors compared to the IV robotics system (1.58% vs 2.47%, P < 0.001), with no significant difference in absolute precision (1.12 vs 1.12 P = 0.952). Lean analysis demonstrated that overall completion time (17:49 minutes vs 24:45 minutes) and compound preparation time (2:39 minutes vs 6:07 minutes) were less with the IV gravimetric TAWF vs the IV robotics system. CONCLUSION: Implementation of either an IV gravimetric TAWF system or IV robotics system will result in similar compounding accuracy and precision. Preparation time was less with use of the IV gravimetric TAWF vs the IV robotic system, but the IV robotic system required less human intervention. Both systems ensure medication safety for patients, although the IV robotic system has increased safeguards in place. Therefore, the primary driver for implementing these systems is alternative factors such as cost of systems implementation and maintenance, employee safety, and drug waste.


Subject(s)
Pharmacy Service, Hospital , Drug Compounding , Humans , Medication Errors/prevention & control , Retrospective Studies , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL